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Bin picking is still a challenge in robotics, as patent in recent robot competitions. These competitions
are an excellent platform for technology comparisons since some participants may use state-of-the-art
technologies, while others may use conventional ones. Nevertheless, even though points are awarded
or subtracted based on the performance in the frame of the competition rules, the final score does
not directly reflect the suitability of the technology. Therefore, it is difficult to understand which
technologies and their combination are optimal for various real-world problems. In this paper, we
propose a set of performance metrics selected in terms of actual field use as a solution to clarify the
important technologies in bin picking. Moreover, we use the selected metrics to compare our four
original robot systems, which achieved the best performance in the Stow task of the Amazon Robotics
Challenge 2017. Based on this comparison, we discuss which technologies are ideal for practical use
in bin-picking robots in the fields of factory and warehouse automation.

Keywords: quality metrics; bin picking; manipulation strategy; general gripper; object recognition

1. Introduction

Bin picking is still an important problem in robotics. Its difficulty is described in [1], for example.
Picking an item from a cluttered scene is applied to various fields: parts supply in Factory
Automation (FA), pick-and-place in Warehouse Automation (WA), cleaning up using household
robots and so on. But it was difficult to apply existing methods, if target items have various shape,
and materials. These few years, robotic competitions which aim to solve a domain challenges are
often held as a platform to accelerate technology development. In the FA field, for example, the
National Institute of Standards and Technology of USA is carrying Agile Robotics for Industrial
Automation Competition [2] since 2017. It is a simulation-based competition focused on agility.
Ministry of Economy, Trade and Industry of Japan is carrying out a Assembly Challenge [3, 4]
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in their World Robot Summit1 since 2018. It is a real robot’s competition focus on factors
during setup changes and those of during operation. The former factors are agility and leanness.
The latter ones are operation rate improvements. In WA field, Amazon Robotics, Inc. held a
competition regarding to a warehouse task automation by robotics in 2017. In large warehouses
of e-commerce corporations, a mixture of daily items are manually picked and placed. The
automation of the manual work is an important problem in robotic bin-picking. In particular,
technical problems lie in picking items with various shapes and in identifying their texture, shape,
and material. Various methods have been proposed to solve the problems in the competition in
which the ability of the robot system was tested in a competition setting. In this paper, we show
a system comparison of the four unique teams which ranked first to fourth places in the Stow
task, Amazon Robotics Challenge 2017. In the competition, the systems were ranked according
to the organizer’s rules. But we have difficulty in analysis of a system performance in terms of
more practical use. The reason is as follows. A single metric like the competition’s score is a kind
of principal component analysis [5], thus dimensionality reduction always lose some information
about original data that reflects their performance. While the needs of each industry are different,
competitions reflecting the needs of each industry are taking place. In this paper, we propose
a set of metrics in order to reflects a detail behavior of a system to our system performance
analysis as a solution. Then we describe an example analysis show the issues that arise when
robots are applied to actual factories or warehouses by using the comparison results. Also, items
in each system to be improved to get more performance will become clear.

The main contributions of this paper are the following:

• We show the details of four unique robot systems and compare the system configurations
of each team.

• We proposed a system performance evaluation based on plural metrics introduced from
reliability engineering [6, 7]. By this analysis, each team strategy was revealed.

• We discuss on pros and cons of the systems and technologies including the details of the
systems, and also discuss on what we have learned and on future system design.

The rest of this paper is organized as follows. Section 2 presents the related works. Sec-
tion 3 introduces the Stow task. Section 4 describes four systems developed for this task. Sec-
tion 5 presents our proposed system performance evaluation. Section 6 analyzes our findings and
presents lessons learned. Finally, Section 7 concludes this paper.

2. Related works

The related works are presented in five groups. The first group includes systems developed for
the bin-picking tasks. The second group summarizes different design approaches for grippers.
The third group is on grasp planning. The fourth group is on item recognition. Finally, the fifth
group is about comparison analysis of competition systems.

2.1 Bin-picking systems related to competitions

Bin-picking is a classical but still state-of-the-art challenge in robotics. Many proposals were
made on the automation of pick-and-place tasks in warehouses in the Amazon Picking Challenge
(later known as Amazon Robotics Challenge), held from 2015 to 2017. In particular, there were
many proposals and findings on gripper design to solve problems when picking various items as
described in later sections. In the first competition held in 2015, actual shelves used in Amazon
warehouses were also used in the pick-and-place of daily items from a bin.

1https://worldrobotsummit.org/en/
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As mentioned in the summary article of the 2015 competition [8], it was proven that a suction
gripper is able to pick many kinds of items. Further in the 2016 competition, the winner Delft
[9] and many other teams succeeded in picking hard-to-pick items such as a mesh cup, which a
suction gripper was unable to handle, by combining suction and two-finger grasping or similar
pinching mechanisms.

2.2 Gripper design

For grasping, the combination of suction and two-finger or suction only became the common
configuration. In the 2017 competition, almost all the teams used either of the two-gripper con-
figurations mentioned above. The overall winner of 2017 [10] as well as team NAIST-Panasonic
(Garcia et al. [11]), who configured the system by analyzing the past competitions and came
fourth at their first attempt, adopted the gripper configuration of suction and two-finger com-
bination. Team MIT-Princeton [12], the winner of Stow task in 2017, where only bin-picking
ability was tested, made a system which enabled several motions such as suction down, suc-
tion side, grasp down, flush grasp in one gripper system that combined suction and two-finger
grippers. Only the runner-up in Stow Task, Team Nanyang [13], used a configuration with two
suction grippers and without a two-finger gripper. They achieved a high score by focusing on
bin rather than gripper design. To explain in detail, they added a mechanism which expanded
the bin space thereby modifying the problem from a hard bin-picking to a simpler picking like a
pick-and-place problem from a wide open flat space. The team was successful in picking various
items, and their strategy was necessary for items in a hard-to-pick pose or occluded. Team MC2

proposed a two-stage strategy to use three types of gripper properly [14]. As aforementioned,
many types of gripper designs were proposed in the competitions.

In comparison, jamming gripper [15] is highly versatile in picking various kinds of items.
Nevertheless, there are some difficulties in applying jamming grippers to bin-picking because
when a jamming gripper tends to pick several small items in a tightly packed bin simultaneously.
Also, in principle, as it needs to come into contact with the item before it starts grasping, it tends
to fail in picking soft items which may change shape easily. Thus, nobody used the jamming
gripper in the competitions.

2.3 Grasp planning and grasp point detection

Grasp point detection takes place to determine the gripper pose to pick detected items. A
method [16] which convolutes a binary image model of the gripper to the depth image and does
not require pre-information of the object is already used in factory automation. Many methods
for grasp point detection using machine learning from RGB images and depth images have been
proposed. Jiang et al. proposed a method [17] which searches in an RGB image for a pose that
is easy for a two-finger gripper to grasp and they were the first to make it practical [18] with
deep learning. Pinto et al. proposed a grasp point detection method [19] from an RGB image
based on 50,000 trials on actual robots. Moreover, Levine and others achieved a method [20]
where hand-eye coordination detects a grasp point from RGB data. The common among all these
methods is that they are able to determine the grasp point using only images. Unfortunately,
the physical correspondence between gripper and item in grasping [21] cannot be understood
just from appearances in an image. Mahler and others have defined a matrix which determines
grasp points for a number of objects in advance from the relationship between the 3D object
model and the 3D gripper model and propose a method [22] which assumes a physical grasp
point of unknown objects by learning from a vast amount of data. They achieved this with
deep learning [23] and used it with vacuum and suction1 type of grippers [24]. In this method,

1In this paper, we refer to the blower-based suction as suction and vacuum-pump-based suction as vacuum.
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bin picking is available based on the learned results when the learning becomes precise enough.
Furthermore, Matsumura and others succeeded in bin picking with real robots exclusively by
learning from simulation data [25]. Team MIT-Princeton [12] and others fitted for both suction
and two-finger grippers by detecting grasp points with Fully Convolutional Network (FCN) on
the base [12]. Whether to use a learning method by providing data beforehand or to use a non-
learning method which is more adaptive to unknown objects and environmental changes depends
on the preconditions of the problem.

2.4 Sensors and algorithms for item recognition

In the competition, item detection based on images obtained from RGB-D sensors is often used.
The winning team in 2015 probabilistically classified multi-class items with a method which
describes the type of item in each pixel using image features obtained from RGB and depth
images [26]. Then, items are segmented by integrating the result. In the 2015 competition, many
teams used algorithms based on image features. From 2016 onward, many adopted Convolutional
Neural Networks (CNN) and showed good performance. Faster network variants such as Faster
R-CNN [27] which performs bounding box detection and multi-class classification in order, and
high speed YOLO [28] and SSD [29], which perform the detection and classification in parallel,
were used for the recognition. There were teams [10] who used semantic segmentation methods
as a base and all performed well in detecting (classifying) items in the bins.

Object pose detection is used to determine grasp point on items after they are detected. In
general, data obtained from an RGB-D sensor and object model are matched together using
methods such as Iterative Closest Point [30], which minimizes the point cloud position errors
between data and model, and Directional Chamfer Matching [31], which presumes object pose
by featuring image edges and matching them for every view direction. Such methods are used for
bin-picking in factory automation as they are robust against illumination changes, among other
things. The methods [32, 33], which estimate object pose by voting after extracting features
and matching pairs of vectors obtained from edges and planes of object, are good in speed and
accuracy balance. A method [34], which assumes the position and approximate pose of an object
by adding multi-view data to a CNN, is also proposed. Nevertheless, to use these methods, a
3D model of the object is required. If a 3D model is not available, a method by the Team MIT-
Princeton [35], which assumes the object pose by fitting primitive shapes like spheres and cubes
directly to the data, is also proposed. The method to use depends on the precondition of the
problems.

2.5 Comparison analysis of competition systems

In the Amazon Robotics Challenge, points are awarded or subtracted based on the performance
in the frame of the rules. But the final score does not seem to directly reflect the technology
suitability. Therefore, organizers and teams published papers about system analysis [8]. Results
of the analysis are not based on the scores in the competition, but statistical data by a ques-
tionnaire survey about used technologies, team configurations, and so on. From the results, we
can understand which technologies were well used in the competition. But we have difficulty in
analysis of a system performance in terms of more practical use.

Successful picking rate as shown in [14, 16] or well-known cycle time1 is an important metric
to evaluate the system performance in practical use. Mean Picks Per Hour (MPPH) [22] is also
a well-used metric [12, 24] which is related to both picking rate and picking time. But such
a single metric is a kind of principal component analysis [5]. Thus dimensionality reduction
always lose some information of original performance data. Therefore, in this paper, we propose

1Originally, Adept company had proposed this metrics. It is a round trip time or cycle numbers per a minute of a robot
TCP trajectory which goes 25 [mm] up, 305 [mm] horizontal, 25 [mm] down.
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Figure 1. Example of items in a tote for the Stow task.

a set of metrics in order to analyze a system performance that reflects different aspects of a
system behavior. We calculate metrics as below. Average time per pick and Number of
trials per hour for comparison of a bare picking action speed, Mean Time Between Failure
(MTBF) which is expected to compare a validity of a control algorithm that can keep up with
the phenomenon, Mean Time to Repair (MTTR) expected to reflects skills of recovery
operation when work error occurs, and Availability that can expect a comparison of duty
rate of normal operation and recovery operation, in addition to MPPH, for each team. These
introduced metrics [6] are originally used in a field of reliability engineering ( for ex. [7]). The
details of the metrics will be shown in Chapter 5. The purpose of introducing a set of these
metrics is primarily a comparison of the detailed functionality and performance of each system
as described above. The true goals are an uncovering of system design strategies, a discovery of
measures to obtain better functionality and performance for them, and a discovery of legitimate
technologies for the purpose.

3. Problem setting of the Stow task

We show an outline of the Stow task rules in the Amazon Robotics Challenge 2017.

• Robots must pick various daily items automatically from a tote and place them into a
storage.

• Items are mixed in a tote as shown in Fig. 1. Robots must identify the items and record
which items are placed into a bin in the storage.

• If a robot can pick and classify an item, then place the item into a bin in the storage and
record its location successfully, points are awarded.

• If items are dropped or damaged while picking and placing, points are subtracted.
• 20 items are in a tote. Half of the items are distributed to teams in advance. The other

half of the items are distributed just before the starting the competition. The recognition
dataset must be updated in a few minutes.

• Robots must finish the task in 15 minutes. If robots finish the task before the 15-minute
period, teams get additional points.

• Storage can be designed by each team with some limitations: size, number of bins and so
on.

We also describe the details of the scoring system in the rules. Points are awarded as follows:

• 5 points for each item stowed into the storage system, plus 5 additional points if the item
is a new (unknown) item.

• 1 point for every 5 seconds or fraction thereof that remain on the clock when the task is
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complete and all items have been successfully stowed in the storage system, so long as at
least 15 of the locations of the items are correctly registered in the item location file.

Points are subtracted as follows:

• -15 points for each item that is not in the storage system, stow tote, or amnesty tote at
the end of the task, except for items grasped by the robot under normal operation when
time runs out.

• -5 points for each item in the storage system or stow tote with an incorrect final location
in the item location file.

• -5 points for any item that is dropped into the storage system from a height of more than
15 cm.

• -5 points for each item that is protruding more than 2 cm out of the storage system.
• -5 points for minor damage to an item, such as bends and dents.
• -20 points for major damage to an item, such as large rips, holes, or crushing.

More details, please check the official site1.

4. Four proposed systems for the Stow task

4.1 Team MIT-Princeton (1st place)

The MIT-Princeton system [12] consists of a 6DOF ABB IRB 1600id robot arm next to four
picking work-cells (see Fig. 2a). The robot arm uses a multi-functional gripper with two fingers
(built on top of a Weiss WSG 50 gripper) for parallel-jaw grasps and a custom retractable suction
cup. The gripper is designed to function in cluttered environments: finger and suction cup length
are specifically chosen such that the bulk of the gripper body does not need to enter the cluttered
space. One gripper fingertip is equipped with a GelSight tactile sensor, while the other fingertip
uses an actuated fingernail for scooping along the sides of storage bins. Each work-cell consists
of a storage bin, as well as four fixed-mounted RealSense SR300 RGB-D cameras: two cameras
overlooking the storage bins (positioned on opposite sides) are used to infer grasp points, while
the other two pointing towards the robot gripper (also positioned on opposite sides) are used to
recognize objects in the gripper. Each work-cell also includes a force sensor underneath for 1)
checking the weight of picked objects, and 2) detecting collisions.

The system is built around a grasp-first-then-recognize pipeline. For each pick-and-place op-
eration, it uses fully convolutional networks (FCNs) to take as input RGB-D images of the
work-cell, and output pixel-wise confidence scores (i.e., affordances) of four different motion
primitives for picking (see Fig. 2b): top-down suction, side suction, top-down grasp, side-flush
grasp. Each pixel of the output represents a suction or parallel-jaw grasp centered at the 3D
location of that pixels corresponding surface in view (Fig. 2c). The FCNs are trained using a
dataset of 1,837 RGB-D images of cluttered work-cells, with good/bad grasp locations manu-
ally annotated by human experts. During inference, the system selects and executes the motion
primitive with the highest predicted confidence score, picks up one object, isolates it from the
clutter, holds it up in front of cameras, recognizes its category, and places it into the appropriate
bin. The recognition algorithm uses a two-stream network to learn a common feature embedding
space between 1) observed images of held objects, and 2) product images – where images of the
same object match to more similar output features. Since this network architecture does not
rely on knowing the number of object categories beforehand, it is capable of recognizing im-
ages of novel objects unseen during training by matching them to corresponding product images

1https://www.amazonrobotics.com/site/binaries/content/assets/amazonrobotics/arc/2017-amazon-robotics-challenge-
rules-v3.pdf
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Figure 2. The MIT-Princeton system setup (a) consists of a 6DoF robot arm next to four picking work-cells. The system
uses (c) FCNs to predict pixel-wise grasping confidences scores (i.e., affordances) of (b) four motion primitives using suction
and parallel-jaw grasping. After executing the motion primitive at the 3D location of the pixel with the highest confidence
score, the system picks up an object and uses (d) a two-stream network to match images of the held object to the most
similar product image for recognition.

that are provided at test time (Fig. 2d). Prior to the competition, the network is trained over
observed-image-to-product-image pairs of known objects.

This system design has several advantages. First, the FCN-based grasping algorithm is model-
free and agnostic to object identities. It detects grasps by using local geometric and texture
features on objects, allowing it to learn biases that can generalize to novel objects without
retraining (e.g. flat surfaces are good for suction, porous surfaces are bad for suction, etc.). Sec-
ond, the object recognition algorithm works without task-specific data collection or retraining
for novel objects, which makes it scalable for applications in warehouse automation and service
robots where the range of observed object categories is large and dynamic. Third, our grasping
framework supports multiple grasping modes with a multi-functional gripper (suction and grasp-
ing) and thus handles a wide variety of objects. Finally, the entire processing pipeline including
grasp detection and recognition requires only a few forward passes through deep networks and
thus executes quickly (a few hundred milliseconds in total per pick-and-place).

4.2 Team Nanyang (2nd place)

The team formed by members of the Nanyang Technological University (Singapore) developed a
dual-arm robot equipped with suction-based grippers and a top-open drawer-like storage system.

The robot system features two identical manipulators (Universal Robots UR5), three stereo
cameras (Stereolabs ZED) and two custom-built grippers. The built system is shown in Fig. 3(a)
together with its system architecture shown in Fig. 3(b).

We divide the workspace into two individual and one shared work cell to optimize the manip-
ulation performance and decrease the risk of collision between the manipulators.

Our shelf has two bins which temporarily extend sideways in order to disperse the cluttered
pile of items. This allows the system to have easier access to the items and to facilitate the object
detection by decreasing occlusion.

For object detection, we use the results of either one of two classifiers, one based on engineered
features and the other based on learned features, whichever has the highest confidence. This is
because we expect higher confidence for unknown items from the former, and higher confidence
for known items from the latter. As engineered features, we use Grid-based Motion Statistics
(GMS) [36], which is a feature detection algorithm similar in principle to SIFT but superior in
performance. The learned-features are extracted using CNNs.

The grippers are suction-based since over 98% of the training items were successfully grasped
using our modified suction cups. Our grasping strategy consists mainly on approaching the
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Figure 3. Team Nanyang’s system (a) and its system architecture (b).
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(a) System overview

(b) Gripper types

(c) Recognition results

Vacuum gripper

Suction gripper

RGB-D sensors

Storage

Two-finger gripper

Robot arms
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Figure 4. Robot system by team MC2. (a) the system overview. (b) The system has three different types of gripper:
suction, vacuum and two-finger. (c) SSD-based object detection and 3D pose estimation algorithms can detect the graspable
items and the grasping points from cluttered scenes.

objects straight down from the top, which is effective for almost 98% of the items.

4.3 Team MC2 (3rd place)

The team MC2 (Mitsubishi electric corporation, Chubu university, Chukyo university) is shown
in Fig. 4 (a). Two robot arms are mounted on linear sliders, facing each other with the item bins
in the center in between them. Each robot arm is able to operate individually and has an RGB-D
sensor and a force sensor. The RGB-D sensor is used for item and picking position detection.
The recognition algorithms are based on SSD, graspability, and primitive shape matching for
item detection and classification, gripper pose detection, and item pose estimation separately as
shown in Fig. 4 (c). The force sensor is used for force control when the robot picks and places
items. The proposed robot system has three different types of gripper: suction, vacuum and two-
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Figure 5. Bin-picking system proposed by team NAIST-Panasonic. (a) shows the system overview, (b) shows the suction
and two-finger grippers, and (c) presents the learned and engineered features used for item recognition.

finger as shown in Fig. 4 (b). The suction gripper is mounted on the left-side robot, as shown in
Fig. 4 (a). The vacuum and two-finger grippers are mounted on the right-side robot, as shown
in Fig. 4 (a). The two-finger gripper is used after removing the vacuum gripper by using a tool
changer mechanism.

We devised a strategy in which the gripper combination changes accordingly. As bins are
crowded and items are on top of each other, vacuum gripper, which picks items in smaller a
surface area for picking, is preferred. As items are both large and small, the suction gripper,
which is able to pick large items once it recognizes the surface, is also suitable. In contrast,
collision due to item crowding inside the bin must be considered for the two-finger gripper and
it is hard to obtain a pose for grasp positioning in a crowded bin. Therefore, the combination of
vacuum and suction gripper is chosen for the beginning and middle part of the picking process.

When items are isolated, two-finger gripper can reach a grasp pose more easily. Besides, the
value of two-finger gripper rises because the remaining items are hard to pick with vacuum and
suction grippers used at the beginning. What is more, the more sparse the items get, the risk of
picking several items also decreases, and approaching items in hard-to-pick poses becomes easier.
Thus, the suction gripper is also adopted. To achieve the strategy explained so far, we configured
a robot system in which one robot arm has a suction gripper and the other has vacuum and
two-finger grippers, as described in [14]. The grippers are switched with a tool changer.

4.4 Team NAIST-Panasonic (4th place)

Team NAIST-Panasonic is formed by the Nara Institute of Science and Technology (NAIST)
and Panasonic Corporation and include members with experience in robotics competitions [37].

The proposed solution consists of a 7-DOF robot arm (KUKA LBR iiwa 14 R820) with a
custom-made end effector, a controlled space (recognition space) with four RGB-D cameras,
and a shelf (storage system) with weight sensors underneath [38]. The setup of the proposed
bin-picking solution is shown in Fig. 5(a).

The end effector has a suction gripper and a two-finger gripper, shown in Fig. 5(b), mounted on
two separate linear actuators, and an RGB-D camera to recognize items and estimate the grasp-
ing points. The suction gripper consists of a compliant vacuum cleaner hose which is partially
constrained to reduce swinging when transporting items. The two-finger gripper has high-friction
rubber on its parallel fingers and is used as a secondary grasping tool. Both grippers include
force-sensitive resistors to detect collisions with items and force control to avoid damaging items.
The smart design of the end effector provided a reliable and consistent performance. The high
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flow and compliance of the suction gripper reduced the negative effects of vision and motion
planning errors, making the system able to pick and transport the items safely.

The recognition space consists of four RGB-D cameras (Intel Realsense SR300) pointing at a
space over the storage system, where eight LEDs control the illumination and the background
of the cameras’ views is controlled using non-reflective black plates. We combine learned and
engineered features, shown in Fig. 5(c), to achieve a robust object recognition for both known
and unknown items. This was particularly useful in the case of the combination of bounding box
volume and weight for clamshell-type and deformable items.

The strategy to recognize an item is: 1) point the end effector’s camera to the target container,
perform object detection using YOLO v2 [28] and grasping point estimation using RGB images,
and pick the item with the highest recognition confidence; and 2) move this item into the recog-
nition space to confirm or reject the initial belief using SVMs for single or combined engineered
features (color histogram, bounding box volume, and weight) trained with data collected at ap-
proximately 90 seconds per item. A weight is assigned to each learned or engineered feature to
adapt object recognition to the task requirements, physical characteristics of target items, and
so on, resulting in a voting system that determines the final item class.

We designed the system to overcome failures by quickly detecting the most common errors and
by preparing recovery behaviors in advance. This allowed us to retry failed grasping attempts
in a short time. Furthermore, the recognize-while-holding concept of the recognition space in-
creased the robustness of the system to accidentally-dropped and unrecoverable items which
could critically compromise the object recognition capabilities.

4.5 Comparison of system configurations

We show the system configurations of each system in Table 1. The main similarities which can
be understood from this table are:

• All systems are based on industrial robots because accuracy and speed are important
factors to complete the task. Industrial robot’s high accuracy may be excessive but some
collaborative robots are difficult to use for the Stow task because of low accuracy.

• Almost all teams based their grippers on suction (or vacuum) and two fingers. Suction-
based grippers can pick many items including deformable objects but they are difficult to
apply to mesh items (i.e., air-permeable items). On the other hand, two-finger grippers
can pick mesh items. Therefore, the combination performs well.

• The item recognition of the systems is mainly based on RGB-D sensors and CNN-based
algorithms. Open source computer vision implementations are easy to use for researchers
of the robotics field and perform well enough.

The main differences are:

• The number of robots and their degrees of freedom are different. All teams basically pick
items from above the storage system with 4 DoF. Therefore, 6 DoF should be enough.
Robot systems can have many robots but systems with too many robots are hard to
implement and are more prone to collision problems. Therefore, many teams use systems
with fewer robots.

• Some teams used force sensors, weight sensors, visual-tactile sensors (GelSight), and so
on. These sensors seem to be useful for the Stow task but the implementation may be
difficult, mainly because there are very few useful open source projects to help with the
implementation.
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Table 1. System configuration of each team.

MIT-Princeton Nanyang MC2 NAIST-
Panasonic

Robots One 6-DoF
robot arm

Two 6-DoF
robot arms

Two 6-DoF
robot arms on
1-DoF linear
sliders

One 7-DoF
robot arm

Sensors Sixteen fixed-
mount RGB-D
sensors, four
force sensors
(below bins),
one tactile sen-
sor (GelSight on
gripper), and
one air pressure
sensor

Three RGB-D
sensors

Two RGB-D
sensors and two
force sensors
on robot arms,
and two weight
sensors

Five RGB-D
sensors, two
weight sensors,
two FSR-based
contact sensors,
and one air
pressure sensor

Grippers Multi-functional
gripper with
two fingers for
parallel-jaw
grasps and
a retractable
suction cup

Two suction-
based grippers

One large suc-
tion gripper, one
small vacuum
gripper, and
one two-finger
gripper

One suction
gripper and
one two-finger
gripper

Recognition
algorithm

Two FCNs to
infer grasping
points for both
suction and
parallel-jaw
grasping, and a
two-stream net-
work to match
real images
of objects to
product images
for classification

Mixed-mode
classifier using
feature extrac-
tion (GMS) and
CNN

SSD-based item
detector and
classifier from
a RGB image,
gripper pose
detector from
a single depth
map, and 3D
pose estimator
from a point
cloud data

Multi-modal
weighted vot-
ing classifier
using learned
and engineered
features (YOLO
from RGB,
volume from
depth, weight,
and color his-
togram)

Unique features Learning visual
affordances for
multi-functional
gripping (grasp-
ing and suction)

Top-open ex-
tendable shelf
design

Using three
types of grip-
pers and its
combination
strategy

High-flow suc-
tion gripper
and fast failure
recovery

# of robot arms 1 2 2 1
# of sensors 22 3 6 10
# of grippers 1 2 3 2

5. Performance evaluation

5.1 Metrics

We have previously compared two systems (team MIT-Princeton and team MC2 at the Amazon
Robotics Challenge 2017) using Mean Picks Per Hour (MPPH) [22] and our original successful
picking rate as a robot performance index in [14]. MPPH is currently widely-used as a bin-picking
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system performance metric [22, 39]. Since a high correlation to the score of the competition is
seen with MPPH, it is suitable as a performance comparison index of several systems developed
for the Amazon Robotics Challenge 2017.

Comparing system performance using a single number is similar to the results of the Principal
Component Analysis [5], which is a method used for dimensional reduction of multidimensional
data. The principle is to reduce the original amount of information by choosing the component
with the largest possible variance. In that sense, many performance indicators provide the first
principal component innately. However, if the first principal component is chosen for each mea-
surement data, there is the problem that it can only be used for a relative comparison. A solution
to this problem is to evaluate the system performance in a comprehensive way by calculating
several absolute indices for each system.

In this paper, we calculate Average time per pick, Number of trials per hour, Mean
Time Between Failure (MTBF), Mean Time to Repair (MTTR), and Availability, in
addition to MPPH, for each team.

By evaluating each system individually and comprehensively, we analyze their system design
policy and system performance in a multifaceted manner. In each system, their subsystems
work differently as they are designed differently, then multiple metrics will reflect the difference
between systems.
MPPH is calculated by multiplying the Number of trials per hour and the Average

probability of success.
Average time per pick is measured from the competition video of each team. In this metric,

pick refers to the motion from capturing object data by the sensors to pick an item and place
it. Then, Number of trials per hour can be calculated by Average time per pick.

The Average probability of success is also measured from the competition video of each
team.
MTBF stands for Mean Time Between Failures and is calculated by dividing the operating

time by the failure count of the system.

MTBF =
Tup

Ndown
, (1)

where Tup is the duration of the system running well, and Ndown is the number of times the
system fails and takes some recovery actions until it succeeds. These were obtained from the
videos recorded during the Amazon Robotics Challenge 2017.
MTTR stands for Mean Time to Repair and is obtained as follows:

MTTR =
Tdown

Ndown
, (2)

where Tdown is the duration from the beginning of the failure to the end of the recovery actions.
Availability is obtained as follows:

Availability =
MTBF

(MTBF + MTTR)
. (3)

Availability is a dimensionless quantity, which represents the ratio between the time that the
system is running well and the total time the system is operating.
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Table 2. Results of metrics calculation of each team.

MIT-Princeton Nanyang MC2 NAIST-Panasonic
Score based on ARC* rules 160 125 120 110

Number of trials 32 37 28 50
Number of successes** 19 16 18 17

Number of errors 13 21 10 33
Successful picking rate 0.594 0.432 0.643 0.340

Average time per pick [sec] 23.1 24.3 32.1 18.0
Number of trials per hour 156 148 112 200

Average probability of success 0.594 0.432 0.643 0.340
MPPH 92.6 64.0 72.0 68.0

Sum of up time [sec] 535 504 488 437
Sum of down time [sec] 204 396 412 463

Total time [sec] 739 900 900 900
MTBF [sec] 28.2 31.5 27.1 25.7
MTTR [sec] 15.7 18.9 41.2 14.0
Availability 0.642 0.626 0.397 0.647

* Amazon Robotics Challenge 2017.

** Successful sequences of pick, move, and place.

Table 3. Normalized results of selected metrics based on highest score team (team MIT-Princeton).

MIT-Princeton Nanyang MC2 NAIST-Panasonic
Score based on ARC* rules 1.00 0.78 0.75 0.69

Average time per pick 1.00 1.05 1.39 0.78
Number of trials per hour 1.00 0.95 0.72 1.28

Average probability of success 1.00 0.73 1.08 0.57
MPPH 1.00 0.69 0.78 0.73
MTBF 1.00 1.12 0.96 0.91
MTTR 1.00 1.20 2.63 0.89

Availability 1.00 0.97 0.62 1.01

* Amazon Robotics Challenge 2017.

5.2 Performance evaluation using the proposed metrics

We calculated the proposed set of metrics and relative values, as shown in Table 2. Then, we
normalized the most significant metrics based on the winning team (team MIT-Princeton), as
shown in Table 3. We also show these normalized results in Fig. 6.

From Fig. 6, we observe that MPPH and the scores are highly correlated, which makes it suit-
able as a comprehensive performance index in that sense. We consider that the slight deviation
is caused by a difference in scoring when including a bonus point. However, the other metrics
are considerably fluctuating.

6. Discussion

6.1 Analysis of the performance comparison

In this section, we analyze the results shown in Figure 6. We consider changes of each metric in
comparison to the actual system implementation, and explore the system design concept.
MPPH is a good indicator that represents system performance, as evident in the fact that

MPPH and the score based on the rules of the Amazon Robotics Challenge are similar. Here-
after, we examine the factors constituting the MPPH, namely, the Number of trials per
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Table 4. Number of picked items and the successful picking rate of each gripper. We refer to the blower-based suction as
suction and vacuum-pump-based suction as vacuum. In this paper, dropped items during pick-and-place do not count as
successful picking.

MIT-Princeton
Suction Vacuum Two-finger Total

Number of picked items 13 - 6 19
Successful picking rate [%] 54.2 - 75 59.4

Nanyang
Suction Vacuum Two-finger Total

Number of picked items 16 - - 16
Successful picking rate [%] 43.2 - - 43.2

MC2

Suction Vacuum Two-finger Total
Number of picked items 9 6 3 18
Successful picking rate [%] 64.3 100 37.5 64.3

NAIST-Panasonic
Suction Vacuum Two-finger Total

Number of picked items 17 - 0 17
Successful picking rate [%] 34 - 0 34.0

hour and Average probability of success. First, Number of trials per hour is very low
for MC2, while it is high for team NAIST-Panasonic. The other two teams are in the middle.
When we look closely at the system design of each team, MC2, for example, has a hand-eye
system with a vision sensor attached to a wrist of their robot, and it is configured to perform the
vision sensing operation and the other operation sequentially. In other words, the recognition
operation is performed after the completion of the stow operation, which is one cycle before,
then, the picking operation starts. Therefore, one cycle takes an amount of time while the other
teams can perform the previous stow operation and the recognition operation concurrently and
shorten their cycle times.

For the posture variation of the grasping object, the team NAIST-Panasonic uses only one
hand with a vertical downward trajectory, and the grasping operation starts immediately after
recognition is completed. The operation itself is simple, which leads to an increase in the number
of attempts per unit time. The other two teams, especially the team MIT-Princeton, have more
than one type of gripping trajectory, and it takes longer than the team NAIST-Panasonic to
plan and operate. The difference of these system designs is reflected in the number of trials per
hour.

In terms of the Average probability of success, MC2 and MIT-Princeton are compara-
ble, while NAIST-Panasonic and Nanyang have lower values. As a system design concept, the
difference lies in whether it is thought that every single operation is important, and the system
attempts to score by the number of retries even if it fails somehow.

In terms of the MTBF, Nanyang team is somewhat larger, while the other teams are almost
equal. In other words, since the success possibility is slightly higher than the other teams,
Nanyang team can keep their normal operation for longer.

Considering MTTR, MC2 team has a large value. The reason for this is that it is disadvanta-
geous in recovering, it takes long time in one operation, and fails many times at the same object.
This can lead to imagine that the recognition method and the grasping method are too naive
to succeed (i.e., the system makes the same mistakes). The team NAIST-Panasonic is expected
to have a strategy switch that succeeds in recovering at high speed. Teams Nanyang and MIT-
Princeton are moderate, but MIT-Princeton is a little dominant. MIT-Princeton tries different
ways for every fail, each seems reasonable. This enables quick recovery. Nanyang team did grasp-
ing point change for each error. This worked well most of the times. Team NAIST-Panasonic
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Figure 6. System performance comparison based on the selected metrics.

tries aggressively, thus items flipped when grasping failed, and, consequently, the state of the
bin was changed. Moreover, they sometimes changed the grasping point or the target object, so
the success probability increases. MC2 did gently and naive repetition so that the state of the
bin did not change. Then, the same unsuccessful picking motion is repeated.

In terms of Availability, the MC2 team’s value is very low, while the other teams present
high, comparable values. When combined with other indicators, MC2 has a high probability of
success but it takes long time to recover from failure. The other teams seem to be balanced on
the speed of operation, the probability of success, and the time of recovery from failure.

6.2 Lessons learned and future practical system design

In the previous section, we estimated the design policy differences and their performance with
newly introduced metrics, which could not be understood from the analysis based on a single
metric.

Next, we discuss an ideal system according to the arguments we have made so far. We found
that it is especially advantageous to have short operation time, if we try to estimate the ideal
system design. MPPH, which is highly correlated with the competition score, is likely to become
significantly larger as the operation time is shortened. Although high probability of success is
preferable, its effect on MPPH is only linear. These facts indicate that in a system hardware
configuration that best shortens cycle times, a hand eye system is disadvantageous, so vision
sensors should be placed separately. Nevertheless, the freedom of the field of view is restricted
with a hand eye configuration. If the system continues to manipulate the same objects, this
restriction will not be a problem. However, this can be disadvantageous if the target objects
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constantly change, which will require a workspace reconfiguration.
In addition, recovery strategies for grasping failures are important and repetition which does

not rely on probabilistic phenomena is required, for example, by changing parameters of the
recognition algorithm and grasping method, and possibly changing postures of the object by
such as flipping them, shaking the bins, and so on. Here too, it is important to improve the
repetition rate.

Now, we can discuss a theoretical practical system design considering a combination of the
four teams’ systems. It is particularly true that short operation time is a target factor. MPPH,
which is correlated with the score, is likely to take a significantly larger value as the operation
time is shortened. Average probability of success is not so important, as the effects on
MPPH are only linear. These facts give suggestions for tactical strategies to adjust the system.
If there is a choice between success probability and operation time, one should choose to improve
operation time.

In a word on a hardware configuration, hand eye system is disadvantageous, and vision sensors
should be put separately. However, one must be careful for the model switching or system cost
in actual business use. On the other hand, the recovery strategy at the time of grasping failure
is also important. It is worthwhile to focus on the development of error recovery methods. In
any case, speed is desired. If such a team comes to the competition, they will also earn bonus
points and must be the first prize.

Finally, we discuss the identification of the optimal system configuration and technology for
practical use. Even though, an analysis based on the data from the Amazon Robotics Challenge
alone is difficult to generalize, what we have found at this time is that attaching or detaching
a vision sensor to a robot is about changing the advantage or disadvantage depending on the
presence or absence of production model switching.

Then, the need for the next-generation production system is said to be speeding up for produc-
tion changeover or switching, re-usability of production system bodies, autonomous improvement
of production speed and quality, and unmanned operation time by autonomous error recovery
and operation learning [2, 3]. Though these factors are not included in the Amazon Robotics
Challenge, it is expected that competition rules are formulated and implemented to compare
these factors in future competitions.

7. Conclusions

In this paper, we analyzed four robot systems developed for the Amazon Robotics Challenge
using a set of performance metrics that clarify the hidden features behind the competition
scoring. Based on the competition results, we could show the difference between these systems
and which technologies are important for the competition and future practical use according
to the proposed metrics. The technologies relevant to picking robots are improved through the
competition but further technology improvements are needed for practical use. We expect this
analysis to be a good reference for advanced future technologies along with novel needs of the
industry.

Though the evaluation criteria reflecting the needs of the industry were reflected in the scoring
of competitions, it is also true that high-level systems have been proposed with implicit speci-
fications which are difficult to evaluate through competition scores. In fact, working speed and
probability of item damage are important as needs in the industry, and they can become prob-
lems in advanced system design and adjustment. However, in this paper, the ultimate solution
has not been found because no records of item damage exist. It is presumed that all teams are
afraid of penalty points so that they added a wide-enough margin to their system operation
speed to prevent items from being damaged. In the future, a system configuration which can
reduce such margin will be important, as it will also improve the operating speed.
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